Bayesian Sequential Inference for Stochastic Kinetic Biochemical Network Models
نویسندگان
چکیده
As postgenomic biology becomes more predictive, the ability to infer rate parameters of genetic and biochemical networks will become increasingly important. In this paper, we explore the Bayesian estimation of stochastic kinetic rate constants governing dynamic models of intracellular processes. The underlying model is replaced by a diffusion approximation where a noise term represents intrinsic stochastic behavior and the model is identified using discrete-time (and often incomplete) data that is subject to measurement error. Sequential MCMC methods are then used to sample the model parameters on-line in several data-poor contexts. The methodology is illustrated by applying it to the estimation of parameters in a simple prokaryotic auto-regulatory gene network.
منابع مشابه
Model Validation and Discovery for Complex Stochastic Systems
In this thesis, we study two fundamental problems that arise in the modeling of stochastic systems: (i) Validation of stochastic models against behavioral specifications such as temporal logics, and (ii) Discovery of kinetic parameters of stochastic biochemical models from behavioral specifications. We present a new Bayesian algorithm for Statistical Model Checking of stochastic systems based o...
متن کاملStochastic Sequential Neural Networks with Structured Inference
Unsupervised structure learning in high-dimensional time series data has attracted a lot of research interests. For example, segmenting and labelling high dimensional time series can be helpful in behavior understanding and medical diagnosis. Recent advances in generative sequential modeling have suggested to combine recurrent neural networks with state space models (e.g., Hidden Markov Models)...
متن کاملBayesian inference for stochastic kinetic models using a diffusion approximation.
This article is concerned with the Bayesian estimation of stochastic rate constants in the context of dynamic models of intracellular processes. The underlying discrete stochastic kinetic model is replaced by a diffusion approximation (or stochastic differential equation approach) where a white noise term models stochastic behavior and the model is identified using equispaced time course data. ...
متن کاملBayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo.
Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Infe...
متن کاملDelayed acceptance particle MCMC for exact inference in stochastic biochemical network models
Recently proposed particle MCMCmethods provide a flexible way of performing Bayesian inference for parameters governing stochastic kinetic models defined as Markov jump processes (MJPs). Each iteration of the scheme requires an estimate of the marginal likelihood calculated from the output of a sequential Monte Carlo scheme (also known as a particle filter). Consequently, the method can be extr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2006